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Abstract

Human gut microbiota is a novel concept for pathogenesis in many inflammatory disorders including inflammatory bowel disease. In the last decade, experimen-
tal and clinical studies showed that gut microbiota composition is different in ulcerative colitis and Crohn’s disease. This review summarizes the gut microbiome 
association studies and metabolomics of gut microbiota in inflammatory bowel disease. Also, minor components of the gut microbiome (fungi, protozoa, and 
viruses) and IBD data are discussed. The data about probiotics, prebiotics, and synbiotics are also discussed in inflammatory bowel disease treatment and preven-
tion. Finally, we need more clinical trials on this topic to understand the causative role of microbiota in inflammatory bowel disease.
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INTRODUCTION
Microbiota is a general term that defines the whole ecosystem of microorganisms in the human body. This term includes microbiota of the gas-
trointestinal (GI) system, skin, urogenital, respiratory, conjunctiva, and also oral cavity. Each of these sites harbors their own unique microbiota 
composition. The term “microbiome” was first mentioned by Lederberg and McCray in 2001, which signifies the genomic repertoire of microor-
ganisms in health and disease states.1

The GI system is the main area in the human body that supports colonization of commensal microorganisms with a rich amount of fibers, nutrients, 
and oxygen levels. The gut microbiome is composed of 100 trillion microorganisms. Beyond bacteria, there are bacteriophages, fungi, archaea, and 
protozoa in this ecosystem.2 The genomic material in the gut microbiome is far more diverse than the human genome.3 The human gut microbiota 
consisted of Firmicutes, Bacteroidetes, Proteobacteria, and in general, Firmicutes and Bacteroidetes predominate in this environment.

The oral cavity, actually a part of GI tract, confers an ideal environment for these microorganisms since the nutrients, temperature, and mucus layer 
support the growth. For this reason, microorganisms that constitute the oral microbiome are the second most abundant microbiome in the human 
body.4 Approximately 750 species of bacteria can be detected with culture-independent methods.5

Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD). They are chronic inflammatory disorders of the gut.6,7 The 
prevalence of IBD is steadily increasing in the United States, North Europe, and China. There are also similar data from countries such as the 
Middle East, Asia, and South America.8 Although the exact reason for this rapid increase in incidence is not known, environmental factors rather 
than host genetics might be suspected. Host-microbiome interaction is controlled by a variety of genes. Genome-wide association studies have 
detected more than 200 IBD–associated genes, and some of them were involved in the host immune response to gut microbiota (Table 1).9 Recent 
data support the role of gut microbiota in the pathogenesis of IBD (Table 2).10,11 Animal studies have suggested that disturbed microbiota composi-
tion (known as “dysbiosis”) is IBD; however, extrapolation of these results from basic to clinical trials is still challenging (Table 3).12,13

Gut Microbiome as a Potential Biomarker in IBD
Rapid advances in molecular genetic methods enabled differentiation of gut microbiome composition in patients with Irritable bowel syndrome (IBS)  
from Irritable bowel syndrome or healthy population.14-16 In patients with CD, Bacteroides, Eubacterium, Faecalibacterium, and Ruminococcus 
are reduced.17,18 Especially Akkermansia muciniphila19 and Faecalibacterium prausnitzii are the most extensively studied bacteria in CD.20 Lopez-
Siles et al21 investigated F. prausnitzii and Escherichia coli in 28 healthy controls, 45 patients with CD, 28 patients with UC, and 10 patients with 
IBS. They found that F. prausnitzii is a predictor of “health” in patients with CD (and other gut disorders). F. prausnitzii abundance was decreased 
in CD patients and it was lower than patients with IBS and healthy controls. When E. coli was added to F. prausnitzii in the diagnostic analysis, it 
discriminated the ileocolonic vs colonic form of CD patients. The combination of certain bacterial groups might improve the diagnostic value of 
gut microbiota analysis.20 Zhou et al found that gut microbiome samples were able to distinguish healthy vs UC and CD patients with diagnostic 
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accuracy values of 89.5% and 93.2%, respectively.22 However, fecal 
samples from Western countries were less accurate in the differentia-
tion of healthy vs IBD patients. We need more studies on IBD to under-
stand the ethnic, geographical, and cultural differences in a microbiome 
biomarker.

The Composition of gut Microbiome and Metabolic  
Activity in IBD
The gut bacteria have metabolic activities that regulate the host-micro-
biota axis.23 They produce short-chain fatty acids (SCFA) that exert 
various immunological and metabolic activities. SCFAs have diverse 
effects on the human body such as regulating histone deacetylase inhib-
itory activity and inducing some epigenetic and immune responses.24,25 
Also, butyrate is well known for its stimulatory effect on regulatory 
T cells and modulating macrophages.26,27 Butyrate levels are lower in 
feces of IBD patients.28

Franzosa et al investigated the stool sample metabolomics of IBD 
patients.29 They enrolled 155 discovery cohorts and 65 validation 
cohorts consisting of IBD and non-IBD controls. The metabolic 
changes were associated with fecal calprotectin levels. Among more 
than 8000 metabolites, some of them were expressed in IBD patients, 
such as increased sphingolipids and bile acids and decreased tri-
glycerides. The metagenomic profiles of IBD patients showed that 
these bacteria are producing antioxidant metabolites in the inflamed 
mucosa of IBD patients. Interestingly, 246 enzymes in the IBD pop-
ulation were not synthesized by a certain species of bacteria. This 
indicates that there is a community-level metabolic shift in IBD 
patients. In other words, a broad range of bacterial species changed 

their metabolic functions in the inflammatory gut environment  
of IBD patients.

They have also identified 122 strong associations between specific bac-
teria and their metabolites in IBD patients. These specific metabolites 
are potential therapeutic and diagnostic tools.

Bacteriophages, Protozoa, and Mycobiome
When we talk about the gut microbiome, many scientists think about 
bacteria. However, the gut microbiota also consisted of fungi, bacte-
riophages, and protozoa. Of the nonbacterial microorganisms that have 
been studied in relation to IBD, most of them were accepted as patho-
gens (such as Candida albicans, Cytomegalovirus, etc.); however, 
some of these were actually commensal microorganisms.30

Fungi are found in almost every part of our body including skin, uro-
genital system, mouth, small intestine, large intestine, and so on. Most 
of these species are Candida, Malassezia, and Saccharomyces, and 
there are some studies linking them to IBD.31,32 Anti-Saccharomyces 
cerevisiae antibodies are elevated in CD,33,34 and the presence of this 
antibody can increase post-resection recurrence of CD35 and useful in 
the differential diagnosis of UC vs CD.36 Candida species especially C. 
albicans are increased in CD and families.37 In experimental models of 
CD, C. albicans are also increased in the gut microbiome.38 Candida 
species are opportunistic microorganisms, and their pathogenetic 
role might be immune stimulation after mucosal barrier dysfunc-
tion. Also, in IBD patients, a genetic mutation against fungi (e.g., 
DECTIN-1 and Card9) may increase fungal colonization and subse-
quent inflammation.39

Table 1. Genetic Polymorphisms in IBD Related to Mucosal Immune System-Microbiota Interaction

Gene Immune Effects Susceptibility
NOD2/CARD15 Impairment of pathogen recognition CD
NLRP3 IL-1β synthesis CD
ATG16L1 Autophagosome formation CD, UC
IRGM Process of autophagy CD, UC
PTPN2 Autophagy in IEC CD, UC
FUT2 Secretion of blood group ABO antigens and alteration in microbiota CD
JAK2/STAT3 T-cell activation CD
ICOSLG T-cell activation CD
CCR6 Leukocyte activation and migration CD
Modified from reference 15.
CD, Crohn’s disease; IBD, inflammatory bowel disease; IEC, Intestinal epithelial cells; UC, ulcerative colitis.

Table 2. Human and Animal Studies Providing Evidence for the Role of Microbiome in the Pathogenesis of IBD

Animal Studies Human Studies
Germ-free environment prevents colitis IBD disease activity is higher in areas where bacterial populations are high (colon) and 

where there is relative stasis of fecal material (terminal ileum and rectum).
Fecal transfer from mice with colitis to healthy one induces 
inflammation

In refractory CD, fecal diversion is beneficial

Naive CD4+ lymphocytes from healthy mice into mice that lack T 
and B lymphocytes induce colitis

Recurrence of disease occurs after restoration of the fecal stream

CD4+ lymphocyte-induced experimental colitis is dependent on host 
microbiota composition

Antibiotic therapy might change the course of IBD

Genetic markers associated with IBD are related to mucosal immunity against gut 
microbiota
Specific microorganisms stimulate or suppress gut inflammation.

Modified from reference 14.
CD, Crohn’s disease; IBD, inflammatory bowel disease.
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However, not all fungi are pathogenic or pathobiont. Saccharomyces 
boulardii, a well-documented probiotic, also had a protective effect in 
mice with carcinogenic colitis.40,41 The beneficial effect of S. boulardii 
has been shown in CD patients with heterogeneous results.42 There is 
evidence that some fungi may be beneficial in IBD, but inconsistent 
findings indicate that fungi-host interactions are much more complex 
than we previously thought.

Recent metagenomic studies revealed that gut mycobiome consisted 
of dozens of fungi, mostly Saccharomycetaceae. In IBD patients, there 
is a “fungal dysbiosis,” the similar term that we used for bacterial dys-
biosis.43-46 Although there are mixed results, 10 studies investigated the 
composition of mycobiome in IBD patients.47-52 There is no consensus 
about which specific fungi dominate in CD and/or UC today, but these 
findings indicate a potential area of research in combination with bacte-
ria and maybe other microorganisms in the gut microbiome.

Gut protozoa, prevalent in developing countries, are seldomly detected 
in developed countries. However, the prevalence of IBD is the opposite 
of this phenomenon. The incidence and prevalence of IBD are higher 
in developed, westernized countries.53 Although gut parasites and pro-
tozoa are mostly accepted as pathogenic microorganisms, there is evi-
dence that parasites can shift mucosal immune response in IBD.54-57  
Blastocystis species and Dientamoeba fragilis are found in human 
feces and they infect humans by the fecal-oral route.58,59 Although these 
microorganisms are blamed for endemic gastroenteritis, recent studies 
did not find any evidence about this causation.60-64 A recent trial also 
found that especially Blastocystis species are associated with healthy 
(increased diversity) gut microbiota.60 Both Blastocystis and D. fragilis 
were lower in active UC; however, they are elevated in remission and 
healthy controls.65

The main barrier in studying mycobiome and protozoa species is the 
low levels of these microorganisms in human gut microbiome. It is 
difficult to capture sufficient DNA for the detailed analysis. For this 
reason, the samples are enriched for eukaryotic cells before analysis. 
Further studies will better delineate and overcome this difficulty. In 
the future, decreasing costs of these tests, enrichment of reference 
databases, advanced computational methods, and selecting eukaryotic 
cells before analysis will improve mycobiome and protozoa analyses 
in IBD.

Virome is another frontier for gut microbiome research. Some 
authors claim that gut virome is the “dark matter of IBD pathogen-
esis”.66,67 There are two kinds of viruses in the gut: viruses infecting 
eukaryotic cells (e.g., human cells) and viruses infecting bacteria (bac-
teriophages). Most of the human gut virome is composed of bacterio-
phages.68 Human gut bacteriophage trials in IBD showed consistent 
results. Although there is a paucity of trials, most of them indicated an 
increased abundance of Caudovirales and a decreased virome diversity 

in CD and UC.69-70 There are many limitations of virome analysis. 
Similar to fungal genetic material, viral DNA is a small proportion of 
the total genome in a sample. Viruses have tiny genetic materials and 
are highly susceptible to mutation. For these obstacles, standardiza-
tion of virome research is needed. Bacteriophages are also potential 
therapeutic tools, thus modulating bacteriomes in the gut environment. 
Bacteriophages can modify gut bacteria into two proposed mecha-
nisms: first, phage particles can induce immunological response (direct 
action). Second, phages can transfer genes to bacteria (horizontal gene 
transfer—indirect action).71

Although there is no clinical therapeutical trial with bacteriophages in 
humans, further studies are needed to fill this gap of knowledge in IBD 
therapy.

Probiotics, Prebiotics, and Synbiotics in IBD
Probiotics can be defined as live microorganisms, which when admin-
istered in adequate amounts, confer health benefits on the host.72 The 
term probiotics usually refers to bacteria predominantly found in fer-
mented products such as yogurt, kefir, pickles. Prebiotics are mainly 
fibers that are selectively fermented by commensal bacteria providing 
a health benefit. Prebiotics are classified as polyols (sugar alcohols), 
oligosaccharides, and soluble fibers.73 Synbiotics are a combination of 
probiotics and prebiotics.

Recent meta-analysis showed that probiotics have a beneficial clinical 
effect on IBD course, especially UC.74 The consumption of these prod-
ucts (literally food supplements) is theoretically supposed to increase 
the number of Bifidobacteria and Lactobacilli in the gut. The mecha-
nism of action of pro-, pre-, or synbiotics in IBD is not completely 
understood. The proposed mechanisms are the metabolic activity of 
beneficial bacteria (synthesis of SCFAs), anti-inflammatory action, 
modulating the microbial balance, mucosal immunity, and improv-
ing regulatory T cells and barrier function.75 The effects of pro-, pre-, 
and synbiotics on the gut microbiota are also controversial. Some tri-
als showed an increase in the number of Bifidobacteria and F. praus-
nitzii.76,77 Prebiotics are also studied in IBD. Benjamin et al showed 
that fructo-oligosaccharide supplementation in active CD showed 
null effects on gut microbiota composition.78 VSL3 is a multispecies 
probiotic combination. In UC, there are sufficient evidence for induc-
ing remission and prevention of relapse as an adjuvant therapy with 
mesalazin.79

As a result, pro-, pre-, and synbiotics could have a positive impact on 
the clinical course of UC by probably increasing the number of benefi-
cial bacteria (especially Bifidobacteria). However, there is a significant 
bias in trials and further multicenter studies are needed to reach a firm 
conclusion.

CONCLUSION
IBD is a heterogeneous, multifactorial autoinflammatory condition. 
Although genetic factors are well-established environmental factors, 
epigenetic and microbiome-related effects are still under investigation. 
Gut microbiome and related parameters (metabolome and proteome, 
etc.) enable a therapeutic potential that we can modify (unlike genet-
ics). Current data indicate a correlation between gut microbiota compo-
sition-function and IBD etiology and natural disease course. There are 
still unanswered questions about IBD and gut microbiota connection. 
What is the longitudinal effect of microbiota from birth to adulthood? 
What is the effect of gut microbiome modulation on the prevention of 
IBD, disease severity, phenotype, and response to therapy. What is the 

Table 3. Gut Microbiome Composition in Various Studies in UC

Decreased Increased
Bacteroides Enterococcus
Clostridium XIVab Escherichia coli
Lactobacillus Actinobacteria
Akkermansia muciniphila Proteobacteria
Clostridium leptum Campylobacter ureolyticus
Modified from references 23 to 29.
UC, ulcerative colitis.
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effect of the oral microbiome on the gut microbiome and IBD course? 
We still have more questions than answers on this topic, and standard-
ized methods and high-quality studies investigating the causal effect of 
gut microbiota on IBD are needed.
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